ICC11
DOS based C Cross Compiler for MC68HC11
User Manual

version 0.43

Copyright © 1993, 1994 by ImageCraft, Richard Man, and Christina Willrich

Feb. 8th, 1993
LICENSE AGREEMENT

This is a pre-general release version 0.43 of the ImageCraft C Cross Compiler for the
Motorola MC68HC11 processors. There is no charge for a license to use this release of
the product. This product is protected by copyright laws and is not in the public domain.
This license and the use of this product expires when the general release (version 1.0)
becomes available to the general public. This license will not cover the general release
version, nor any subsequent releases.

The general release will contain a relocatable assembler and linker, and is estimated to
cost around $50.

WARRANTY INFORMATION

There is no warranty available on this version of the ImageCraft C Cross Compiler. This
product and all related documentation are provided "AS IS." ImageCraft and the
authors of this product do not warrant that this product will be bug-free, and since this is
a pre-release version, there are likely to be bugs. UNDER NO CIRCUMSTANCES,
INCLUDING NEGLIGENCE, SHALL IMAGECRAFT OR THE AUTHORS OF THIS
PRODUCT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES THAT RESULT FROM THE USE OF OR INABILITY TO USE THIS
PRODUCT.

If you do not agree with the above licensing agreement and warranty information, you
have no right to use this product and you must destroy this copy of the product
immediately.

Introduction

The ImageCraft C Cross Compiler for the MC68HCL11 is a set of low cost standard
conformance tools for programming in C and assembly on Motorola's 68HC11 series of
microcontrollers. It consists of the following component programs:

1. iccll.exe
- the driver program.
2. icpp.exe

- the C preprocessor.
3. iccomll.exe

- the compiler.
4. iasll.exe

- the assembler.
5. crts

- C runtime assembly file.
6. printf.c

- simple printf-like function.
This manual does not describe how to write C or assembly programs. Any textbooks on

ANSI standard C can be used for reference on C, and the assembler is based on the
Motorola freeware version whose syntax is fairly well known and documentation for it

can be obtained in many places. These programs accept file paths in either the
Unix-style forward slash format or the DOS-style backward slash format.

If you use this product, please send us a message with your contact address so we
may send you announcements of availability of new versions. Copies of the product on
a 3 1/2" IBM disk can be obtained for a "shipping and handling" charge of $9.95. Of
course, even though this version is available for free, a small contribution of between
$5 to $10 will give us encouragement and incentive to continue development of this
product (please make checks payable to Christina Willrich).

Currently, the best way to register and contact us are:
e-mail: imagecft@netcom.com, or
ImageCraft
P.0.Box 64226, Sunnyvale, CA 94086-9991

Please report bugs to the contact address above. Machine configuration and a copy of
the source code will help us to track down the bug. The compiler can generate
information such as tables of variables' stack offsets, and line numbers as labels in the
assembler output, both of which are helpful in tracking down your programming bugs
and pinpointing compiler errors.

Since this release contains several unimplemented features, we would also appreciate
it if you inform us which ones are most important to you, so that they can receive a high
development priority.

Machine Requirements and Program limitations

This program runs in 8086 real modes under DOS, Windows VDM, OS2 VDM and
probably most DOS emulators on the popular Un*x and Mac*ntosh machines. A 32 bit
protected mode version that runs on OS2 2.X and DOS can be obtained from us. The
32 bit version supports HPFS long filenames, wildcard expansion, has access to large
memory space and executes faster than the 16 bit version, but otherwise is identical to
it. The compiler should also run inside Integrated Development Environments such as
IDEAL and Brief.

Unlike most other DOS-based compilers that have separate front end and back end
programs, this is an integrated compiler in that the front end and the back end are a
single monolithic program. This improves execution speed at the expense of requiring
more conventional memory. The compiler does not use extended or expanded
memory, so if you encounter an out-of-memory problem, your recourse is either: a)
freeing up more conventional memory, b) reducing the size of the program, or c)
acquiring the 32 bit version of the compiler.

The language preprocessor is close to ANSI C conformant and the C language
accepted by the language processor is ANSI C conformant. The code generator does
not yet support floating point code generation. long data type is the same size as the int
data type, which is 2 bytes. In addition, the Icc compiler front end defines char data type
as equivalent to signed char, which is unfortunate for the HC11 target since all

computations smaller than int are promoted to int, and signed char promotions to int are
more expensive than unsigned char promotions on the HC11.

There is no linker, librarian, debugger,or standard C headers and library in this release.
Lack of a linker is not too much of a limitation since the assembler, compiler, and
compiler driver have been written so that files of multiple types can be compiled and
assembled together. A limited version of printf is provided.

Some of these limitations may be fixed in a later release.

The generated code should run on any version of the HC11, in both single-chip and
expanded modes.

Installation

Put all the .exe files in a directory in your path. Crt.s should be placed either in the
same directory as your source or in the directory pointed to by the environment variable
ICC11_LIB. Header files should be placed in the directory pointed to by the
environment variable ICC11_INCLUDE.

To verify the system is set up correctly, type "iccll -o dhry dhry.c printf.c" on the
command line. You should see some (harmless) warnings from the preprocessor and
an output file dhry.s19 should be produced.

Program Operation

This is a traditional compiler system where you invoke the compiler driver with your C
and assembly source files, and if there is no error, an output file is produced. The
output is a Motorola hex format file, suitable to download to a monitor program such as
BUFFALO.

File paths can use either forward slash or backward slash format. In addition to the
current directory, the preprocessor searches for header files in a directory specified by
the environment variable ICC11_INCLUDE if it exists. The compiler driver also directs
the preprocessor to search for system header files in /Icc/include by default.

Even though there is no separate relocatable linker in this release, the assembler can
take multiple assembly source files and thus can be used in lieu of one. The code
generator has been written such that any local symbol defined in a source file is distinct
from generated local symbols in other source files (basically, local names are
appended with the source file name) so that there should not be any local symbol name
conflict.

The driver automatically invokes the assembler to assemble the file crt.s before other
files that you specify. Crt.s contains several routines that the code generator emits for
code that is too large to be generated inline. For example, multiply, divide and structure
assignments routines are placed in there.

Crt.s also contains the startup code. The starting address for the code section (usually
start of free RAM, or EEPROM), the starting address for data (usually external RAM or
HC11 internal RAM) and the initial stack address are specified in here. You should
modify these addresses to match your environment. This code fragment defines the

starting address of the program, and the initial value of the stack pointer, then jumps to
the C function main.

To use the printf function, you must define a function called putchar that outputs a
single character and compile printf.c (or printf.s) with your files. The file crt.s contains a
version of putchar that uses BUFFALO to do the output. You must replace it with
something suitable for your system. This implementation of printf is very primitive.
Please refer to the source code comment to see what it does support.

For systems with small amount of memory, an assembler listing should be generated to
determine whether the program fits in the memory space or not. The compiler does not
place any limit on the number or size of the local variables. However, due to the
architecture of the HC11, you should consider placing large objects in static storage
rather than on the stack since an indexed addressing mode can only access within 256
bytes of the frame pointer (as mentioned, the compiler does generate correct code to
access objects with offset larger than 256 bytes off the frame pointer).

Debugging

The debug command line switch (-g) directs the compiler to emit labels of the form
filename.line in the assembly output file where line is the source line number. The
assembler listing file contains these labels and their actual code offset. Using these
code offsets, breakpoints can be set in a debugger.

In the assembly output file, after each function label, the compiler emits a list of local
variables and parameters with their corresponding offset off the frame pointer 1X, as a
comment block. Along with the debugging line labels above, it is relatively easy to
inspect the source code and the listing file for debugging purposes.

Code Quality and Optimizations

Although the compiler does not perform register allocation or other
resource-demanding global optimizations, it does perform basic block Common
Subexpression Elimination in the front end, and branch shortening in the back end.
Function arguments are passed in preallocated areas on the stack so no stack
adjustment code is necessary after function calls. In addition, the compiler has a built-in
peephole optimizer that walks through the generated code and eliminates redundant
loads and stores, and replaces other inefficient code fragments with something shorter
and faster.

Space or time critical code can be either be written as C callable assembly routines, or
assembler instructions can be embedded directly in the C source files.

Interfacing C With Assembly Routines

C global function and data names are prefixed with an'_', and arguments are pushed
right to left and converted to their "natural size." That is, char and short are converted to
int, and float is (or will be) converted into double. All arguments are passed on stack. D
register contains the return value, if any. IX and IY registers can be used freely in an
assembly routine. Argument stack space is allocated on function entry and thus does
not need to be freed by the callee.

The assembler supports the "sect" pseudo op. "Sect 0" is the code section and "sect 1"
is the data section. Each section has its own program counter. This is especially useful
for using the HC11 in single chip mode where you may assign the code section to
internal EEPROM and the data and stack sections to the internal RAM.

The compiler supports embedded assembly in the C source code. The format is
asm("string");

"string" may contain variable references in the form of "%name." If name is a variable
that is defined, the generated assembly replaces %name with the assembler
references. If name is not a visible variable, then the literal "name" will be output. C
escape sequences such as '\n' may be used inside the string. Note that an embedded
assembly instruction must begin with a space or tab if it does not start with a label.
Otherwise the assembler will generate an error. For example, the following fragment:

int external;
foo(int param)

{

int local;

asm(" Idd %param");

asm("label: addd %local");

asm(" std %external");

asm(" Idd %xxx"); [* xxx is not a variable */

may generate something like:

ldd 2+2,x
label: addd 2-2,x

std _external

ldd xxx

You should not use "%?" inside the asm string, the output is meaningless. Note that the
peephole optimizer does not optimize embedded asm code.

Command Syntax
iccll [options] filenames

compiles the input files by invoking the appropriate processors to handle the input file
types. The output is a Motorola hex format file, with an extension of .s19. Acceptable

file types are: .c for C source file, .i for C source file after preprocessing, and .s file for
assembly source file. Options are:

-V verbose, prints out each action before execution. If specified more than once, no
action gets executed.

« -ofile names the output file, default iccout.s19

o - creates an assembly listing file with name <output file name>.|st
-E preprocesses a .c fileinto an .i file

-S compilesinto assembly but does not assemble.

-S silence mode. Will not print out each file name as the files are processed.

The following flags are passed directly to iccom11; please refer to their descriptions
under that section.

-P

A
. -w
g
. -0

iccll also accepts other options, their behaviors are currently undefined.

icpp [options] input [output]

A complete description of this preprocessor and the flags can be found in cpp.mem.
Some of the more important flags are:

+ -Dname[=value]
define the word name to have the value. If value is not specified, then 1 is assumed
« -ldirectory

add directory to the search path for locating include files.
By default, icc11 specifies the -l/iccll/include to icpp.

iccom11 [options] input [output]

Compiles the preprocessed C source into assembly file. Options are:

-V prints out compiler version string.

« -00 disables the peephol e optimizer.

- -P generates function prototypes for functions encountered. Useful for converting
non-ANSI programsto ANSI C.
-A checksfor strict ANSI conformance. If specified more than once, emits additional
warnings.
-w do not generate warning.
-g generates debugging line labels.

ias11 [options] filenames

Assembles the input files into a hex format output. All modules of a program must be
specified, otherwise, an undefined symbol value error will result. Options are:

- generates alisting file.

-ofile names the output file. Default isiccout.s19.
+ -S creates symbol table dump.
+ -C includes cycle countsin listing file.
« -cre includes crossreferencein listing file.

Known Bugs

« _asm() only works inside a function definition. It also ought to work outside a function.
+ The debugging line number labels only use the base file name, and thus executable code
defined inside an include file will not use the correct file name in the labels.

REXIS

A prime reason this compiler is written is so that hobbyists can experiment with REXIS
(tm) (Real time EXecutive for Intelligent Systems). This release does not yet fully
support REXIS since it is lacking several library functions. Here is an excerpt from the
REXIS user manual:

REXIS (Real-time EXecutive for Intelligent Systems) is
a small multitasking preemptive executive for embedded
microcontroller systems. Based on both the designs of
traditional real-time kernels and subsumption
architecture as developed at the MIT Artificial
Intelligence Laboratory for programming autonomous
robots, REXIS provides a framework for implementing
control programs for intelligent systems such as those
used in robotic and distributed networks. It includes
functions for managing tasks, messages, events,
semaphores, scheduling, and memory allocation.

REXIS is written in portable ANSI C with a small
assembly module for fast and efficient task switching.
It is currently targeted for Motorola MC68HC1l1
microcontroller systems with at least 24K of RAM. Other
targets are under consideration.

Please contact us if you are interested in REXIS or in using this compiler system with
REXIS.

Acknowledgments

Most of the components in this current version are either in the public domain, or are
copyrighted materials with permission for distribution. icc11 and the front end
component of iccom11 are based on the Icc distribution written and copyright by David
Hanson. The copyright information on these components are stated in the file
readme.lcc. icpp is based on the public domain DECUS C preprocessor written by
Martin Minow. The file readme.cpp is the readme file from the DECUS distribution.
ias1l is based on the public domain assembler from Motorola. If you want information
on how to obtain the sources for unmodified versions of these programs, please look in
the relevant readme files or contact us.

The ¢ ode generator component of the compiler, iccom11, is entirely of Richard Man's
creation and is not based on any existing compiler technology. Christina Willrich is the
resident English language / techwriting guru and helped to prepare anything that
Richard has ever published or distributed. Thanks to Ariane (age 3) for letting us finally
use the computer after she played "Busytown" for the zillionth time.

Copyright © 1993, 1994 by ImageCraft, Richard F. Man and Christina J. Willrich.

